lunes, 28 de junio de 2010

La Geometría:


Geometría (del griego geo, 'tierra'; metrein, 'medir'), rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y diámetro de figuras planas y de la superficie y volumen de cuerpos sólidos. Otros campos de la geometría son la geometría analítica, geometría descriptiva, topología, geometría de espacios con cuatro o más dimensiones, geometría fractal, y geometría no euclídea.

Geometría demostrativa primitiva

El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios. Este tipo de geometría empírica, que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinado y sistematizado por los griegos.

Pitágoras

En el siglo VI a.C. el matemático Pitágoras colocó la piedra angular de la geometría científica al demostrar que las diversas leyes arbitrarias e inconexas de la geometría empírica se pueden deducir como conclusiones lógicas de un número limitado de axiomas, o postulados. Estos postulados fueron considerados por Pitágoras y sus discípulos como verdades evidentes; sin embargo, en el pensamiento matemático moderno se consideran como un conjunto de supuestos útiles pero arbitrarios.

Un ejemplo típico de los postulados desarrollados y aceptados por los matemáticos griegos es la siguiente afirmación: "una línea recta es la distancia más corta entre dos puntos". Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas.

Entre estos teoremas se encuentran: "la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos", y "el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados" (conocido como teorema de Pitágoras).

La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro "Los elementos". El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días.

Primeros problemas geométricos

Los griegos introdujeron los problemas de construcción, en los que cierta línea o figura debe ser construida utilizando sólo una regla de borde recto y un compás. Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una recta dada, o de una recta que divide un ángulo dado en dos ángulos iguales.

Tres famosos problemas de construcción que datan de la época griega se resistieron al esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo), la cuadratura del círculo (construir un cuadrado con área igual a un círculo determinado) y la trisección del ángulo (dividir un ángulo dado en tres partes iguales). Ninguna de estas construcciones es posible con la regla y el compás, y la imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882.

Los Números Romanos


Los romanos desconocían el cero, introducido posteriormente por los árabes, así que no existe ningún símbolo en el sistema de numeración romano que represente el valor cero.

Los múltiples símbolos pueden ser combinados para producir cantidades entre estos valores, siguiendo ciertas reglas en la repetición. En los casos en que sea más pequeño, se permite a veces colocar un valor menor (sustrayendo), el símbolo con un valor menor colocado antes que un valor más alto, de manera que, por ejemplo, se puede escribir IV o iv para cuatro, en lugar de IIII. Así, tenemos que los números no asignados a un símbolo se crean haciendo combinaciones como las siguientes:

No existe formato para números con un valor de mayor envergadura, por lo que a veces se utiliza una doble barra o una barra de subrayado para indicar que la multiplicación se realiza por un millón. Como ejemplo, para mostrar un valor de diez millones haría lo siguiente: (X)

Como sistema de numeración \scriptstyle \mathcal{N} = (S, \mathcal{R}), el inventario de signos es \scriptstyle \mathcal{S} = \{\mathrm{I, V, X, L, C, D, M,} \bar{ }\ \} y el conjunto de reglas \scriptstyle \mathcal{R} podría especificarse como:

  • Como regla general, los símbolos se escriben y leen de izquierda a derecha, de mayor a menor valor.
  • El valor de un número se obtiene sumando los valores de los símbolos que lo componen, salvo en la siguiente excepción.
  • Si un símbolo de tipo 1 está a la izquierda inmediata de otro de mayor valor, se resta al valor del segundo el valor del primero. Ej. IV=4, IX=9.
  • Los símbolos de tipo 5 siempre suman y no pueden estar a la izquierda de uno de mayor valor.
  • Se permiten a lo sumo tres repeticiones consecutivas del mismo símbolo de tipo 1.
  • No se permite la repetición de una misma letra de tipo 5, su duplicado es una letra de tipo 1.
  • Si un símbolo de tipo 1 aparece restando, sólo puede aparecer a su derecha un sólo símbolo de mayor valor.
  • Si un símbolo de tipo 1 que aparece restando se repite, sólo se permite que su repetición esté colocada a su derecha y que no sea adyacente al símbolo que resta.
  • Sólo se admite la resta de un símbolo de tipo 1 sobre el inmediato mayor de tipo 1 o de tipo 5. Ejemplos:
- el símbolo I sólo puede restar a V y a X.
- el símbolo X sólo resta a L y a C.
- el símbolo C sólo resta a D y a M.

Los Números Racionales:


Llamamos números racionales al conjunto formado por todos los números enteros y todos los fraccionarios se lo designa por Q y se lo denomina conjunto de los números racionales

Número racional es el que se puede expresar como cociente de dos números enteros, es decir, en forma de fracción. Los números enteros son racionales, pues se pueden expresar como cociente de ellos mismos por la unidad: a = a/1.


Los números racionales no enteros se llaman fraccionarios. El conjunto de todos los números racionales se designa por Q.


Así como en el conjunto Z de los números enteros cada número tiene un siguiente (el siguiente al 7 es el 8, el siguiente al -5 es el -4), no pasa lo mismo con los racionales, pues entre cada dos números racionales existen infinitos números.

Q= { m/n , m Z, n Z, n =0 }

Los números racionales pueden sumarse, restarse, multiplicarse y dividirse y el resultado es un número racional.


Los números racionales sirven para expresar medidas, ya que al comparar una cantidad con su unidad el resultado es, frecuentemente, fraccionario. Al expresar un número racional, no entero, en forma decimal se obtiene un número decimal exacto o bien un número decimal periódico.